WisDOT/WAPA Asphalt Pavement Project Manager Training

June 2010

Topics

- HMA Materials and Mix Design
- HMA Plant Overview
- Hauling, Laydown and Compaction
- Quality Management Program
- Overlay Applications and Asphaltic Surfaces

Let's talk about

- What the specifications say
- Good construction practices
- Project Managers/Leaders roles and responsibilities

Hot Mix Asphalt Materials and Mix Design

WisDOT/WAPA Asphalt Pavement Project Manager Training June 2010

Definitions

- HMA = Hot Mix Asphalt
 - Homogeneous blend of aggregates and asphalt
- SMA = Stone Matrix Asphalt
 - Also homogeneous blend of aggs and asphalt
 - Gap-graded aggregate to allow room for asphalt mastic (asphalt and fines and often stabilizer)

Topics

- General mix requirements
- Aggregate properties
- Asphaltic binders
- Recycled asphaltic materials
- HMA mix design

460.2 HMA Material Requirements

- Coarse aggregates from approved source

 Verify approved sources
- Aggregates should be hard and durable particles with minimal deleterious material
 - ≤1% total by weight of lumps, clay, loam, shale, soft particles, organic materials, adherent coatings, etc.

Aggregate Properties Aggregate physical properties that are of

- importance to asphalt mix/pavement design:
 - Gradation & Size
 - Particle Shape
 - Toughness
 - Durability / Soundness
 - Cleanliness (deleterious materials)
 - Absorption
 - Specific Gravity
 - Adhesion
 - Surface Texture

Aggregate Requirements

- Blend Requirements:
 - Percent fractured faces
 - Flat and elongated particles
 - Gradation
- Deposit/Source Requirements
 - LA wear loss
 - Freeze-thaw soundness

Source Approval (106.3.4.2.2) Qualified personnel/ labs for sampling and testing

- Coarse aggregate sources tested every 5 years (pits) or 3 years (quarries)
 - Aggregates tested for
 - LA Wear

•

- Soundness (sodium sulfate)
- Fracture
- Specific gravity and absorption
- Liquid limit and plasticity
- Freeze/Thaw for sources in specific counties or from out of state

Aggregate Gradation

- Distribution of particle sizes expressed as percent of total weight
- Determined by sieve analysis

Gradation Definitions Maximum Aggregate Size: the smallest sieve through which 100% of the particles will pass Nominal Maximum Aggregate Size (NMAS): one sieve size larger than the first sieve size to retain more than 10% by weight of the particles Asphalt mixture designations use the NMAS.

Gradation / Size Considerations

Larger Maximum Size

- Increases strength
- Improves rut resistance
- Increases skid resistance
- Decreases asphalt content

But ...

 Increases chances of segregation

Smaller Maximum Size

15

- Reduces segregation
- Reduces road noise
- Decreases tire wear
- Aesthetics

But...

 Requires higher binder content (greater surface area per unit volume)

Sieve	SMA 12.5 mm	SMA 9.5 mm
19.0 mm	100	
12.5 mm	90-97	100
9.5 mm	58-72	90-100
4.75 mm	25-35	35-45
2.36 mm	15-25	18-28
0.075 mm	8.0-12.0	10.0-14.0

Soundness and Freeze-Thaw							
Mixture	E-0.3	E-1	E-3	E-10	E-30	E-30x	SMA
ESALs x 10 ⁶	<0.3	0.3-<1	1-<3	3-<10	10-<30	≥30	
Soundness	12	12	12	12	12	12	12
Freeze-Thaw	18	18	18	18	18	18	18
Applies to each source or deposit used in blend.							
							27

SMA

20

45

Shape – Fine Aggregate Angularity

- AASHTO T304, method A
- Fine aggregate at a specified gradation is allowed to flow freely into a 100 cm³ cylinder
- Calculate the voids between particles
- The more angular the aggregate, the higher the void content
- Angular fine agg improves rut resistance, • stability

Aggregate Properties

- All aggregates are porous to varying degrees, which affects the amount of asphalt needed to coat the aggregate particles and the percentage of air voids in the final mixture.
- Some absorption is good improves bond with binder.
- Too much is uneconomical and makes mix design tricky.

Binder Grades

- Specified in contract.
- Contractor option to use virgin, modified or blend with recovered (RAP) binder
- Resultant blend must meet specified grade.

Rotational Viscometer (RV)

- For pumping and mixing at the plant.
- Measures the required torque to maintain a constant rotational speed (20 RPM)
- Converts the torque to viscosity at high temperature (135°C)

Bending Beam Rheometer (BBR)

- Tests for resistance to low temperature cracking.
- A load is applied to beam of asphalt and its deflection is measured against time
- Stiffness is calculated based on measured deflection and standard beam properties
- Direct tension test can also be used for thermal cracking

Elastic Recovery Stretch binder sample at low temperature Cut the thread of binder Allow thread to recover (retract)

- Put ends together and determine how much the thread "snapped back"
- Want elastic binders to resist rutting.

PG Binder Grading Spec					_		
Avg 7-day Max, °C	PG 46	PG 52	PG 58	PG 64	PG 70	PG 76	PG 82
2 day min, c		ک کر ان ان ان ان ان ان ان		ORIGINAL	لقائط بط علا	ال الد الا الا إلا	
<u>←</u> > ≥ 230 °C			(Flash Po	oint) FP		Safety	
[<u><</u> 3 Pa∙s ø 135 ∘C		(R)	otational Viscosity)	RV	High	Temp Ha	ndling
		(Dynamic SI	hear Rheometer)	DSR G*/sin 8		Workabili	ty
<u></u> <u>21.00 kPa</u>	46	52	58	64	70	76	82
		(ROLLING THIN FILM	OVEN) RTFC	O Mass Loss ≤ 1.	00 %		
		(Dynamic Shear Rheometer) DSR G*/sin 8 Rutting Resistance					
22.20 KPd	46	52	58	64	70	76	82
		(PRESSURE AGING VI	ESSEL) PAV				
20 Hours, 2.07 MPa	90	50	100	100	100(110)	100 (110)	110 110)
< 5000 kPa		(Dynamic Sh	ear Rheometer)	DSR G* sin 8	Fa	tigue Cra	cking
	20 7 4	25 22 19 16 3 10 2	2 1 1 1 1 3	2 25 22 19 16 34	31 28 25 22	19 37 34 31 28	5 40 57 4 11 25
S < 300 MPa m 2 0.300		(Bending Beam Rheometer) BBR "5" Stiffness & "m"- valueThermal Cracking					
Report Value	-24 -36 -36	3439549989882844444444444444444444444444444					
> 1.00 %		joenning beam kneckmeter/ DDN: Physical Härdening					
	-24 -30 -36	0 -6 22 28 24 -80 -86 -	2 · 2 · 5 · 2 · 9 ·	a	4 -12 -18 -24	-30 0 -6 -12 -15	ung 24 0 4 42 48 4 ⁸

WisDOT Binder Selection Guidance						
Layers	Project Type	New Base	Overlay			
Upper	Rural \geq 4 million ESALs	PG 58-28	PG 58-28			
Upper	Urban	PG64-28	PG 64-22			
Upper	Intersections – Stopped	PG64-28	PG 64-22			
High	Speed < 55 mph ≥4 million ESALs	PG 64-28				
Traffic	Speed < 55 mph ≥10 million ESALs	PG 70-28				
	Speed > 55 mph ≥10 million ESALs	PG 6	4-28			
Lower PG 58-28 normal PG 64-22 if upper layer is PG64-xx or higher						

WisDOT Binder Selection Guidance

"P" designations

- Substitute equivalent "P" designation for ≥ 5 million ESALs
- PG58-34P
- PG64-28P
- PG64-34P
- PG70-28P

Combined State Binder Group

- Six states share testing and acceptance testing responsibilities (IA, MN, NE, ND, SD, WI)
- Producer or supplier demonstrates ability to produce binder meeting specifications
- Requirements for qualified personnel and labs, sampling and testing, documentation, round robin testing, handling non-complying material, etc.

Project Personnel

 Obtain samples to monitor quality at plant for alterations made to site storage, plant handling process or if modification is occurring at plant.

Recycled Asphaltic Materials

Definitions

- RAP = Reclaimed Asphalt Pavement
- FRAP = Fractionated Reclaimed Asphalt Pavement - RAP separated into different size fractions
 - Fine fraction contains higher binder content
 - Coarse fraction may be easier to incorporate and meet specs
- RAS = Recycled Asphalt Shingles

Recycled Asphaltic Materials

- Contractor option to use RAP, FRAP and RAS
- Stockpile recycled materials separately
- Treat as individual JMF components
- Allowable contents based on percent binder replacement
 - Ratio of recovered binder to total binder

Maximum Binder Replacement						
Recycled Asphaltic Material	Lower Layers	Upper Layer				
RAS only	20	15				
RAP only	35	20				
FRAP only	35	25				
RAS and RAP	30	20				
RAS and FRAP	30	25				
RAS, RAP and FRAP 30 25						

May replace virgin binder with recovered binder up to max without changing virgin binder grade. If using more than max, furnish test results documenting that blend meets contract-specified grade.

HMA Mix Design

The principle objective of a HMA mix design is to determine a unique asphalt content in conjunction with a specific blend of aggregates to produce an economical asphaltic mixture which meets the specified mix type specification

HMA Mix Design

- Factors related to durability
 - Sufficient asphalt binder in the mixture
 - Sufficient compactive effort
 - Sufficient air voids
 - Quality of aggregates

	WisDOT Gyration Levels							
	Mixture E-0.3 E-1 E-3 E-10 E-30 E-30x SMA							
	ESALs x 10 ⁶	<0.3	0.3-<1	1-<3	3-<10	10-<30	≥30	
	Nini*	6	7	7	8	8	9	8
	Ndes	40	60	75	100	100	125	65
L	Nmax	60	75	115	160	160	205	160
	* Guideline only.							
								70

WisDOT Specification							
Mixture	E-0.3	E-1	E-3	E-10	E-30	E-30x	SMA
ESALs x 10 ⁶	<0.3	0.3-<1	1-<3	3-<10	10-<30	≥30	
Air Voids	4.0	4.0	4.0	4.0	4.0	4.0	4.0
%G _{mm} at N _{ini}	≤91.5	≤90.5	≤89.0	≤89.0	≤89.0	≤89.0	
%G _{mm} at N _{max}	≤98.0	≤98.0	≤98.0	≤98.0	≤98.0	≤98.0	
Dust:Binder*	0.6-1.2	0.6-1.2	0.6-1.2	0.6-1.2	0.6-1.2	0.6-1.2	1.2-2.0
VFB	70-80	65-78	65-75	65-75	65-75	65-75	70-80
*0.6 − 1.6 for gradations passing below caution zone. VFB for 9.5mm mixes is 73-76% VFB lower limit for 25mm and 37.5mm mixes is 67%							
							74

+								
Des	Design Enhancement							
Intersection	Intersections: "Bump up" Mix & Binder							
MAINLINE MIXTURE	INTERSECTION MIXTURE	BINDER						
E-0.3 (PG 58-28)	E-3	PG 64-28						
E-1 (PG 58-28)	E-3	PG 64-28						
E-3 (PG 58-28)	E-10	PG 64-28						
E-10 (PG 64-28)	E-30	PG 70-28						
E-30 (PG 64-28)	E-30X or SMA	PG 70-28						
Limit the number of different binders to ~ 2 for a project Identify intersection limits								
		/5						

